

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

High-Voltage NP0/X7R

I KV TO 3 KV

0.47 pF to 33 nF

RoHS compliant & Halogen Free

YAGEO Phicomp

SCOPE

This specification describes High-Voltage NP0/X7R series chip capacitors with lead-free terminations.

<u>APPLICATIONS</u>

- PCs, Hard disk, Game PCs
- Power supplies
- LCD panel
- ADSL, Modem

FEATURES

- Supplied in tape on reel
- Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC <u>xxxx x x x xxx x B x xxx</u>

(2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0805 (2012) / 1206 (3216) / 1210 (3225) / 1808 (4520) / 1812 (4532)

(2) TOLERANCE

 $C = \pm 0.25 pF$

 $D = \pm 0.5 pF$

 $G = \pm 2\%$

 $J = \pm 5\%$

 $K = \pm 10\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) TC MATERIAL

NPO

X7R

(5) RATED VOLTAGE

C = I KV

D = 2 KV

E = 3 KV

(6) PROCESS

N = NP0

B = Class 2 MLCC

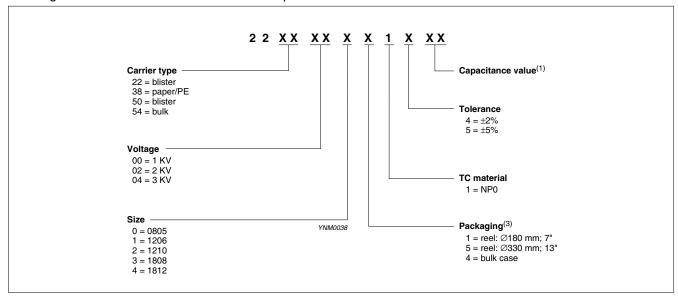
(7) CAPACITANCE VALUE

2 significant digits+number of zeros

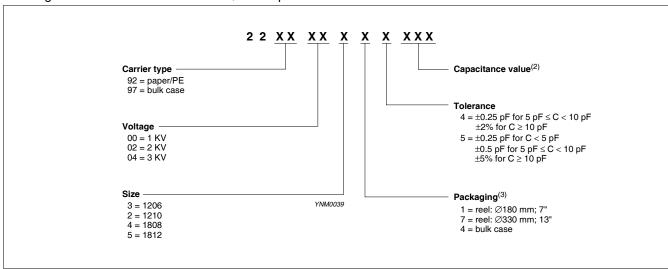
The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

PHYCOMP BRAND ordering codes


GLOBAL PART NUMBER (preferred), PHYCOMP CTC (for North America) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

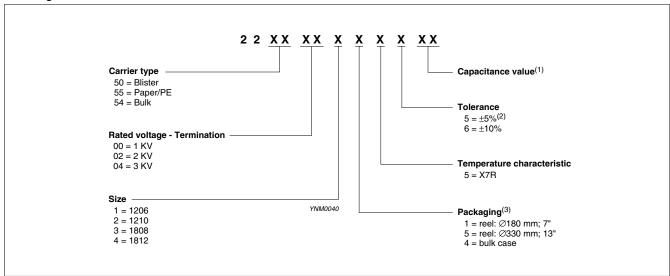
GLOBAL PART NUMBER (PREFERRED)


For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

12NC CODE

Ordering information for NP0 I KV to 3 KV, C ≥ 10 pF

Ordering information for NP0 I KV to 3 KV, C < 10 pF



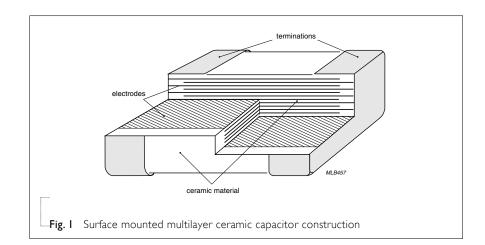
- (I) Please refer to "Last 2-digit of 12NC" in "CAPACITANCE RANGE & THICKNESS FOR NP0"
- (2) Please refer to "Last 3-digit of 12NC" in "CAPACITANCE RANGE & THICKNESS FOR NP0"
- (3) Quantity on reel depends on thickness classification; see table 5

4 16

Ordering information for X7R I KV to 3 KV

- (I) Please refer to "Last 2-digit of I2NC" in "CAPACITANCE RANGE & THICKNESS FOR X7R"
- (2) Tolerance ±5% is not available for full product range, please contact local sales force before ordering
- (3) Quantity on reel depends on thickness classification; see table 5

PHYCOMP CTC CODE (FOR NORTH AMERICA)

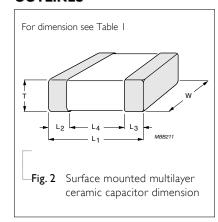

◆ Example: I2I02RI02KFBB00

1210	2R	102	К	F	В	В	0	0
Size code	Temp. Char.	Capacitance in pF	Tolerance	Voltage	Termination	Packing	Marking	Range identifier
0805 1206 1210 1808 1812	CG = NP0 2R = X7R	the third digit signifies the multiplying factor: $8 = \times 0.01$ $9 = \times 0.1$ $0 = \times 1$ $1 = \times 10$ $2 = \times 100$ $3 = \times 1,000$	$C = \pm 0.25 \text{ pF}$ $D = \pm 0.5 \text{ pF}$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$	E = 1 KV F = 2 KV G = 3 KV		2 = 180 mm 7" Paper/PE 3 = 330 mm 13" Paper/PE B = 180 mm 7" Blister F = 330 mm 13" Blister P = Bulk case	0 = no marking	0 = conv. Ceramic D = Class 2 MLCC

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.



DIMENSION

Table I For outlines see fig. 2

TYPE	l (mm)	\\/ (mm)	T (MM)	L ₂ / L ₃	(mm)	L ₄ (mm)
11175	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0805	2.0 ±0.20	1.25 ±0.20	_	0.25	0.75	0.55
1206	3.2 ±0.30	1.6 ±0.20	_	0.25	0.75	1.40
1210	3.2 ±0.30	2.5 ±0.20	Refer to table 2 to 4	0.25	0.75	1.40
1808	4.5 ±0.40	2.0 ±0.30		0.25	0.75	2.20
1812	4.5 ±0.40	3.2 ±0.20		0.25	0.75	2.20

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR NPO

CAP.	Last 3-digit of	1206		1210		1808		
	12NC	I KV	2 KV	I KV	2 KV	I KV	2 KV	3 KV
0.47 pF	477							
0.56 pF	567							
0.68 pF	687							
0.82 pF	827							
1.0 pF	108			1.25±0.2				
1.2 pF	128		0.85±0.1					
1.5 pF	158							
1.8 pF	188	0.05 + 0.1			125.02	125.02	125.02	1.4.00
2.2 pF	228	0.85±0.1			1.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2
2.7 pF	278							
3.3 pF	338							
3.9 pF	398							
4.7 pF	478							
5.6 pF	568							
6.8 pF	688							
8.2 pF	828							

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

CAPACITANCE RANGE & THICKNESS FOR NPO

1	e 3 Sizes from											
CAP.	Last 2-digit of	0805	1206		1210		1808			1812		
	12NC	I KV	I KV	2 KV	I KV	2 KV	I KV	2 KV	3 KV	I KV	2 KV	3 KV
10 pF												
12 pF												
15 pF												
18 pF												
22 pF		1.0±0.1										
27 pF												
33 pF												
39 pF									1.6±0.2			
47 pF				1.25±0.2								1.25±0.2
56 pF												
68 pF						1.25±0.2		1.25±0.2				
82 pF												
100 pF			1.25±0.2		1.25±0.2						1.25±0.2	
120 pF							1.25±0.2					
150 pF												
180 pF									2.0±0.2	1.25±0.2		
220 pF												
270 pF												
330 pF												1.6±0.2
390 pF												
470 pF												
560 pF												
680 pF												2.0±0.2
820 pF	48											2,0±0,2
I.0 nF	49											

NOTE

1.2 nF

1.5 nF

1.8 nF

2.2 nF

2.7 nF

3.3 nF

51

52

53

54

55

56

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

1.6±0.2

8

CAPACITANCE RANGE & THICKNESS FOR X7R

Table	e 4 Sizes from 0	805 to 18	312		
CAP.	Last 2-digit of	0805	1206	1210	1808

CAP.	Last 2-digit of	0805	1206		1210		1808			1812		
	12NC	I KV	I KV	2 KV	I KV	2 KV	I KV	2 KV	3 KV	I KV	2 KV	3 KV
100 pF	09											
150 pF	12											
220 pF	14											
330 pF	16								1.6±0.2			
470 pF	18			1.25±0.2								
680 pF	21			1.23±0.2				1.35±0.15				
1.0 nF	23		1.25±0.2			1.25±0.2			2.0±0.2		1.35±0.15	1.6±0.2
1.5 nF	25					1,23±0,2	1.35±0.15		Z.U±U.Z		1,33±0,13	2.0±0.2
2.2 nF	27					1.6±0.2		1.6±0.2				Z,U±U,Z
3.3 nF	29				1.25±0.2							
4.7 nF	32				1,2310,2					1.35±0.15		
6.8 nF	34						1.6±0.2				1.6±0.2	
10 nF	36						1,010,2				2.0±0.2	
15 nF	38											
22 nF	41				1.6±0.2							
33 nF	43				2.0±0.2					1.6±0.2		
47 nF	45											
68 nF	47											
100 nF	49											

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For products with 5% tolerance, please contact local sales force before ordering

9/16

THICKNESS CLASSES AND PACKING QUANTITY

-	_			_
	la	h	e	-5

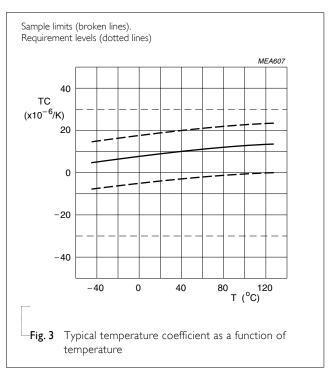
lable 5		T405 \440 T14	Ø180 MM	/ 7 INCH	Ø330 MM	/ 13 INCH	OLIANITITY	
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH – QUANTITY PER REEL	Paper	Blister	Paper	Blister	QUANTITY PER BULK CASE	
0201	0.3 ±0.03 mm	8 mm	15,000		50,000			
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000	
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000	
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000	
0005	0.8 / 0.85 ±0.1 mm	8 mm	4,000		15,000		8,000	
0805	1.00 ±0.1 mm	8 mm		3,000		10,000		
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000	
	0.6 ±0.1 mm	8 mm	4,000		20,000			
	0.8 / 0.85 ±0.1 mm	8 mm	4,000		15,000			
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000		
1200	1.25 ±0.2 mm	8 mm		3,000		10,000		
_	1.6 ±0.15 mm	8 mm		2,500		10,000		
	1.6 ±0.2 mm	8 mm		2,000		10,000		
- - -	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000		
	0.85 ±0.1 mm	8 mm		4,000		10,000		
	1.15 ±0.1 mm	8 mm		3,000		10,000		
	1.15 ±0.15 mm	8 mm		3,000		10,000		
	1.25 ±0.2 mm	8 mm		3,000				
1210	1.5 ±0.1 mm	8 mm		2,000				
	1.6 / 1.9 ±0.2 mm	8 mm		2,000				
	2.0 ±0.2 mm	8 mm		2,000 1,000				
	2.5 ±0.2 mm	8 mm		1,000 500				
	1.15 ±0.15 mm	I2 mm		3,000				
	1.25 ±0.2 mm	I2 mm		3,000				
1808	1.35 ±0.15 mm	I2 mm		2,000				
	1.5 ±0.1 mm	I2 mm		2,000				
-	1.6 ±0.2 mm	I2 mm		2,000				
	2.0 ±0.2 mm	I2 mm		2,000				
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000				
	1.15 ±0.1 mm	I2 mm		1,000				
	1.15 ±0.15 mm	I2 mm		1,000				
	1.25 ±0.2 mm	I2 mm		1,000				
1812	1.35 ±0.15 mm	I2 mm		1,000				
_	1.5 ±0.1 mm	I2 mm		1,000				
	1.6 ±0.2 mm	I2 mm		1,000				
	2.0 ±0.2 mm	I2 mm		1,000				
	2.5 ±0.2 mm	I2 mm		500				

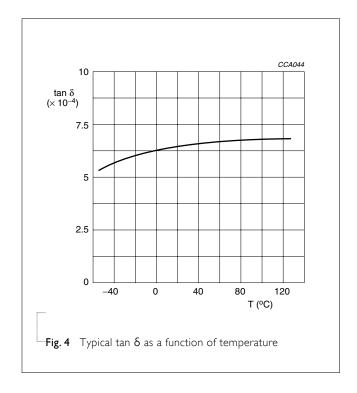
10

16

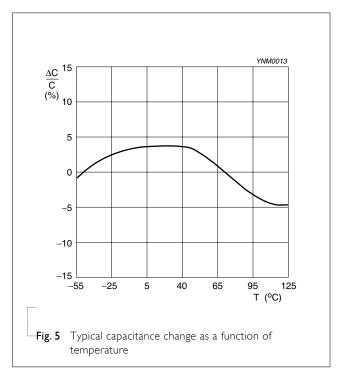
ELECTRICAL CHARACTERISTICS

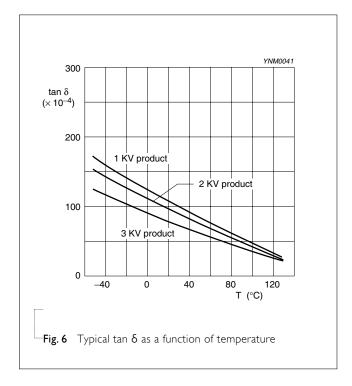
NP0/X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS


Unless otherwise stated all electrical values apply at an ambient temperature of 20±1 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.


Table DESCRIF		VALUE
	nce range	0.47 pF to 33 nF
Capacita	nce tolerance	
NP0	C < 10 pF	±0.25 pF, ±0.5 pF
	C ≥ 10 pF	±2%, ±5%
X7R		±5% ⁽¹⁾ , ±10%
Dissipati	on factor (D.F.)	
NP0	C < 30 pF	≤ I / (400 + 20C)
	C ≥ 30 pF	≤ 0.1 %
X7R		≤ 2.5 %
Insulation	n resistance after I minute at U _r (DC)	$R_{ins} \ge 10 \text{ G}\Omega$ or $R_{ins} \times C \ge 500$ seconds whichever is less
	n capacitance change as a function of temperature ature characteristic/coefficient):	
NP0		±30 ppm/°C
X7R		±15%
Operatir	ng temperature range:	
NP0/X	7R	-55 °C to +125 °C

NOTE


^{1. ±5%} tolerance of capacitance value isn't available for X7R full product range, please contact local sales force before ordering


HIGH-VOLTAGE NP0

HIGH-VOLTAGE X7R

SOLDERING RECOMMENDATION

 Ta	ы	le	7

SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST METI	HOD	PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 4.3 21/22		The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance		4.5.1	Class I: $f = I \text{ MHz for C} \le I \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = I \text{ KHz for C} > I \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $Class 2:$ $f = I \text{ KHz for C} \le I0 \mu\text{F, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance	
Dissipation Factor (D.F.)	·		In accordance with specification		
Insulation Resistance		4.5.3 $U_r \le 500 \text{ V: At Ur for I minute}$ In accordance $U_r > 500 \text{ V: At } 500 \text{ V for I minute}$		In accordance with specification	
Temperature Coefficient 4.6 Class I: Between minimum and maximum temperature: 20 °C Normal Temperature: 20 °C		Between minimum and maximum temperature NP0: -55 °C to +125 °C	ΔC/C: Class I: NP0: ±30 ppm/°C		
Temperature Characteristic			Class 2: Between minimum and maximum temperature X7R: -55 °C to +125 °C Normal Temperature: 20 °C	Class 2 X7R: ±15%	

Surface-Mount Ceramic Multilayer Capacitors | High-Voltage | NP0/X7R | 1 KV to 3 KV

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Adhesion	IEC 60384- 21/22	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N
Bond Strength of		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
Plating on End Face			Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm	$\Delta C/C$ Class I: NP0: within $\pm 1\%$ or 0.5 pF, whichever is greater Class2: $\times 7R$: $\pm 10\%$
Resistance to Soldering Heat		4.9	Precondition: $150 + 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			I minute Preheating: for size >1206: 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	Δ C/C Class 1: NP0: within $\pm 0.5\%$ or 0.5 pF, whichever is greater Class2: \times 7R: \pm 10%
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			Test conditions for lead containing solder alloy Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: 1 Test conditions for lead-free containing solder alloy Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: 1	

Surface-Mount Ceramic Multilayer Capacitors | High-Voltage | NP0/X7R | 1 KV to 3 KV

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Rapid Change of Temperature	IEC 60384- 21/22	4.11	Preconditioning: 150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature Recovery time 24 ±2 hours	No visual damage $\Delta C/C$ Class 1: NP0: within ±1% or 1 pF, whichever is greater Class2: X7R: ±15% D.F. meet initial specified value R _{ins} meet initial specified value
Damp Heat		4.13	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. Recovery: Class 1: 6 to 24 hours Class 2: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met. 	No visual damage after recovery

TEST METH	OD	PROCEDURE	REQUIREMENTS
IEC 60384- 21/22	4.14	Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp	No visual damage
			ΔC/C
		2. Initial measure:	Class I:
		Spec: refer to initial spec C, D, IR	NP0: within ±2% or 1 pF, whichever is greater
		3. Endurance test:	Class2:
		Temperature: NP0/X7R: 125 °C	X7R: ±15%
		Specified stress voltage applied for 1,000 hours.	D.F.
		High-Voltage series follows the stress conditions below: Applied $2.0 \times U_r$ for < 500 V series Applied $1.3 \times U_r$ for 500 V, 630 V series	Class I:
			NP0: ≤ 2 × specified value
			Class2:
			X7R: ≥ 25 V: ≤ 5%
		• • • • • • • • • • • • • • • • • • • •	R _{ins}
		5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	Class I:
			NP0: \geq 4,000 M Ω or
			$R_{ins} \times C_r \ge 40s$ whichever is less
			Class2:
			$X7R$: ≥ 1,000 M Ω or
			$R_{ins} \times C_r \ge 50s$ whichever is less
IEC 60384-1	4.6	Specified stress voltage applied for 1 minute	No breakdown or flashover
		$U_r \le 100 \text{ V}$: series applied 2.5 U_r $100 \text{ V} < U_r \le 200 \text{ V}$ series applied (1.5 $U_r + 100$) $200 \text{ V} < U_r \le 500 \text{ V}$ series applied (1.3 $U_r + 100$) $U_r > 500 \text{ V}$: 1.3 U_r I: 7.5 mA	
	IEC 60384- 21/22	21/22	IEC 60384- 4.14 1. Preconditioning, class 2 only: $150 + 0/-10 ^{\circ} \text{C} / \text{I} \text{ hour, then keep for}$ $24 \pm \text{I} \text{ hour at room temp}$ 2. Initial measure: $\text{Spec: refer to initial spec C, D, IR}$ 3. Endurance test: $\text{Temperature: NPO/X7R: 125 } ^{\circ} \text{C}$ $\text{Specified stress voltage applied for I,000 hours.}$ $\text{High-Voltage series follows the stress conditions}$ below: $\text{Applied } 2.0 \times \text{U}_r \text{ for } < 500 \text{ V series}$ $\text{Applied } 1.3 \times \text{U}_r \text{ for } 1 \text{ KV, 2 KV, 3 KV series}$ $\text{Applied } 1.2 \times \text{U}_r \text{ for I KV, 2 KV, 3 KV series}$ $\text{4. Recovery time: } 24 \pm 2 \text{ hours}$ $\text{5. Final measure: C, D, IR}$ P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.} IEC 60384-1 4.6 Specified stress voltage applied for I minute $\text{U}_r \leq 100 \text{ V: series applied } 2.5 \text{ U}_r$ $100 \text{ V} < \text{U}_r \leq 200 \text{ V series applied } (1.5 \text{ U}_r + 100)$ $200 \text{ V} < \text{U}_r \leq 500 \text{ V series applied } (1.3 \text{ U}_r + 100)$ $100 \text{ V} < \text{U}_r \leq 500 \text{ V series applied } (1.3 \text{ U}_r + 100)$ $100 \text{ V} < \text{U}_r \leq 500 \text{ V series applied } (1.3 \text{ U}_r + 100)$

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 4	Aug 08, 2011	-	- Product range updated
Version 3	Jan 19, 2011	-	- Dimension updated
			- Add NP0 0805 1KV
Version 2	Feb 02, 2010	-	- Change to dual brand datasheet that describe High-Voltage NP0/X7R series with RoHS compliant
			- Replace the high voltage part of pdf files: UP-NP0X7R_HV_IK-to-4KV_I and UY-NP0X7R_HV_IK-to-4KV_I
			- Description of "Halogen Free compliant" added
			- Product range updated
			- Define global part number
			- Test method and procedure updated
Version I	Sep 30, 2005	-	- Thickness revised
Version 0	Sep 12, 2005	-	- New